Neuroinflammation and Aβ Accumulation Linked To Systemic Inflammation Are Decreased By Genetic PKR Down-Regulation

نویسندگان

  • Anne-Sophie Carret-Rebillat
  • Clarisse Pace
  • Sarah Gourmaud
  • Laura Ravasi
  • Samantha Montagne-Stora
  • Sophie Longueville
  • Marion Tible
  • Erika Sudol
  • Raymond Chuen-Chung Chang
  • Claire Paquet
  • François Mouton-Liger
  • Jacques Hugon
چکیده

Alzheimer's disease (AD) is a neurodegenerative disorder, marked by senile plaques composed of amyloid-β (Aβ) peptide, neurofibrillary tangles, neuronal loss and neuroinflammation. Previous works have suggested that systemic inflammation could contribute to neuroinflammation and enhanced Aβ cerebral concentrations. The molecular pathways leading to these events are not fully understood. PKR is a pro-apoptotic kinase that can trigger inflammation and accumulates in the brain and cerebrospinal fluid of AD patients. The goal of the present study was to assess if LPS-induced neuroinflammation and Aβ production could be altered by genetic PKR down regulation. The results show that, in the hippocampus of LPS-injected wild type mice, neuroinflammation, cytokine release and Aβ production are significantly increased and not in LPS-treated PKR knock-out mice. In addition BACE1 and activated STAT3 levels, a putative transcriptional regulator of BACE1, were not found increased in the brain of PKR knock-out mice as observed in wild type mice. Using PET imaging, the decrease of hippocampal metabolism induced by systemic LPS was not observed in LPS-treated PKR knock-out mice. Altogether, these findings demonstrate that PKR plays a major role in brain changes induced by LPS and could be a valid target to modulate neuroinflammation and Aβ production.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low levels of copper disrupt brain amyloid-β homeostasis by altering its production and clearance.

Whereas amyloid-β (Aβ) accumulates in the brain of normal animals dosed with low levels of copper (Cu), the mechanism is not completely known. Cu could contribute to Aβ accumulation by altering its clearance and/or its production. Because Cu homeostasis is altered in transgenic mice overexpressing Aβ precursor protein (APP), the objective of this study was to elucidate the mechanism of Cu-induc...

متن کامل

Voluntary Exercise Promotes Glymphatic Clearance of Amyloid Beta and Reduces the Activation of Astrocytes and Microglia in Aged Mice

Age is characterized by chronic inflammation, leading to synaptic dysfunction and dementia because the clearance of protein waste is reduced. The clearance of proteins depends partly on the permeation of the blood-brain barrier (BBB) or on the exchange of water and soluble contents between the cerebrospinal fluid (CSF) and the interstitial fluid (ISF). A wealth of evidence indicates that physic...

متن کامل

Effects of plasmalogens on systemic lipopolysaccharide-induced glial activation and β-amyloid accumulation in adult mice.

Neuroinflammation essentially involves an activation of glial cells as the cause/effect of neurodegenerative diseases such as Alzheimer's disease (AD). Plasmalogens (Pls) are glycerophospholipids constituting cellular membranes and play significant roles in membrane fluidity and cellular processes like vesicular fusion and signal transduction. Intraperitoneal (i.p.) injection of lipopolysacchar...

متن کامل

PMC-12, a Prescription of Traditional Korean Medicine, Improves Amyloid β-Induced Cognitive Deficits through Modulation of Neuroinflammation

PMC-12 is a prescription used in traditional Korean medicine that consists of a mixture of four herbal medicines, Polygonum multiflorum, Rehmannia glutinosa, Polygala tenuifolia, and Acorus gramineus, which have been reported to have various pharmacological effects on age-related neurological diseases. In the present study, we investigated whether PMC-12 improves cognitive deficits associated w...

متن کامل

P 94: The Systemic Inflammation after Spinal Cord Injury

Spinal cord injury (SCI) actuate to complex cellular and molecular interactions within the central nervous system in a heave to repair the initial tissue damage. The pathophysiology of acute spinal cord injury (SCI) involves primary and secondary mechanisms. Neuroinflammation is an important secondary injury process in SCI. The local inflammatory microenvironment within the injured spinal cord ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015